A NOTE ON THE DECOMPOSITION OF TREES

INTO ISOMORPHIC SUBTREES

Noga Alon

Abstract

Caro and Schonheim gave a necessary condition for a tree H to be the union of pairwise edge disjoint subtrees, each isomorphic to a given tree G, and showed that this condition is not sufficient in general. They raised the following question:

Does the sufficiency of their condition for a given tree G and for all trees H of the same size as G imply its sufficiency for the given tree G and for all trees H?

Here we answer this question affirmatively.

Our notation is similar to that of Caro and Schonheim in [1]. All graphs considered in this note are finite. A graph H is said to have a G-decomposition if it is the union of pairwise edge-disjoint subgraphs, each isomorphic to G. We denote this situation by G|H.

We denote by E(G) the set of edges of G and put e(G) = |E(G)|.

If u is a cut point of a tree T and $\{(u,z_i): 1 \le i \le s\}$ is the set of edges incident with u, then T-u is a forest consisting of trees T_1, \ldots, T_s where $z_i \in T_i$ for $1 \le i \le s$. The branches of T at u are the trees $T_i \cup (u,z_i)$, $1 \le i \le s$. If v is a vertex of T, $v \ne u$, let B(u,v,T) denote the unique branch of T at u that contains v. We denote by B(u,T) the set of all branches at u.

Denote by $d_{t,k}(u,T)$ the number of branches B at u such that $e(B) \equiv t \pmod{k}$; the (mod k) branching vector of u is the vector $d_k(u,T) = (d_{1,k}(u,T),d_{2,k}(u,T),\ldots,d_{k-1,k}(u,T))$. Notice that if T has k edges then $d_{1,k}(u,T)$ is just the number of branches at u having exactly i edges.

Let G be a tree with k edges, and let U be the set of cut points of G. Let H be a tree and let V be the set of cut points of H. Denote by G||H the following condition: For every $\mathbf{v} \in V$ $\mathbf{d}_k(\mathbf{v},H)$ is a linear combination with non-negative integer coefficients of the vectors $\mathbf{d}_k(\mathbf{u},G)$ ($\mathbf{u} \in U$).

Theorem 2 in [1] states that if G and H are trees and e(G) > 1 then $G|H \to G||H$. The converse is not true in general and some simple counter examples are given in [1].

In our notation, Question 3 in [1] is whether the following theorem is true:

THEOREM 1. Let G be a tree with k edges, $k \ge 1$, and suppose that for every tree T with k edges

 $G \mid |T \rightarrow G|T$ (i.e. $G \mid |T \rightarrow T|$ is isomorphic to G).

Then for every tree H

 $G \mid H \rightarrow G \mid H$.

We shall prove this Theorem below. We note that its validity establishes Theorems 3,4,5 and 6 of [1] as immediate consequences of Lemmas 1-8 of [1], and using it we can prove many more theorems of the same kind.

Proof of Theorem 1. Let G be a tree satisfying the hypothesis of the theorem. Assume k>1 since otherwise there is nothing to prove. An easy observation, stated as Observation 1 in [1], states that if $G \mid H$ then the number of edges of H is $m \cdot k$ for some $m \geq 1$. We prove the assertion of the theorem by induction on m. For m=1 it holds by the hypothesis. Assume it holds for every m' < m, let H be a tree with $m \cdot k$ edges, m > 1, and suppose $G \mid H$.

If there is a cut point u of H, and a branch B at u with $m_1 \cdot k$ edges for some $0 < m_1 < m$, put $H_1 = B$ and let H_2 be the union of the remaining branches at u. Clearly H_1 and H_2 are trees. It is easily seen that every cut point v of H_1 is a cut point of H and $d_k(v,H_1) = d_k(v,H)$. Indeed this holds since $B(v,H_1) \setminus \{B(v,u,H_1)\} = B(v,H) \setminus \{B(v,u,H_1)\}$ and since

$$\begin{split} & \quad \quad e(B(v,u,H) - e(B(v,u,H_1)) = e(H_2) = (m-m_1) \cdot k \\ \\ & \quad \text{implies} \quad e(B(v,u,H)) \equiv e(B(v,u,H_1)) \pmod{k}. \end{split}$$

Similarly, every cut point $v \neq u$ of H_2 is a cut point of H_2 and $d_k(v, H_2) = d_k(v, H)$. If u itself is a cut point of H_2 , then

clearly $d_k(u,H_2) = d_k(u,H)$. (Note the absence of the coordinate $d_{0,k}(u,T)$ from the vector $d_k(u,T)$!). Therefore $G||H_1$ and $G||H_2$, and by the induction hypothesis $G|H_1$ and $G|H_2$, which implies $G|H_1$ as needed.

Thus we may assume that the number of edges of any branch of H is not divisible by k. Let U denote the set of all cut points of G.

By hypothesis, for every cut point v of H, there are non-negative integers x(v,u) ($u \in U$), such that

$$d_k(v,H) = \Sigma\{x(v,u) \cdot d_k(u,G): u \in U\}.$$

We consider two cases.

CASE 1. There is a cut point v of H, such that

$$\Sigma\{x(y,u): u \in U\} > 1.$$

In this case, let $u_0 \in U$ satisfy $x(y,u_0) \ge 1$. Clearly there is an injective map

f:
$$B(u_0,G) \rightarrow B(v,H)$$

such that

$$e(B) \equiv e(f(B)) \pmod{k}$$
 for all $B \in B(u_0,G)$.

Put $H_1 = \cup \{f(B): B \in B(u_0,G)\}$ and $H_2 = \cup \{B \in B(v,H): B \notin f(B(u_0,G))\}$. Clearly H_1 and H_2 are edge-disjoint trees and $E(H) = E(H_1) \cup E(H_2)$. Since f is not surjective, both H_1 and H_2 have fewer edges than H. Clearly $E\{e(B): B \in B(u_0,G)\} = e(G) = k$ and thus $e(H_1) = E\{e(f(B)): B \in B(u_0,G)\} = 0 \pmod{k}$ and $e(H_2) = e(H) - e(H_1) = 0 \pmod{k}$. As above it is easily checked, that for every cut point $w \neq v$ of H_1 $d_k(w,H_1) = d_k(w,H)$, and that for every cut point $q \neq v$ of H_2 $d_k(q,H_2) = d_k(q,H)$. In addition $d_k(v,H_1) = d_k(u_0,G)$ and $d_k(v,H_2) = E\{x(v,u).d_k(u,G): u \in U \setminus \{u_0\}\} + (x(v,u_0)-1).d_k(u_0,G)$.

Therefore $G \mid H_1$ and $G \mid H_2$. By the induction hypothesis $G \mid H_1$ and $G \mid H_2$ and thus $G \mid H$. This completes the proof of Case 1.

CASE 2. For every cut point v of H, $d_k(v,H) = d_k(u,G)$ for some

u e U.

Recall that we assume that for no branch B of H $e(B) \equiv 0 \pmod k$. We shall prove that under this assumption Case 2 is impossible. Indeed suppose we are in Case 2 and let v be a cut point of H. By assumption there is a cut point u of G and a bijection $f \colon B(u,G) \to B(v,H)$ such that $e(B) \equiv e(f(B)) \pmod k$ for all $B \in B(u,G)$. If $e(B) \leq k$ for all $B \in B(v,H)$, then e(B) = e(f(B)) for all $B \in B(u,G)$, and thus

 $k=e(G)=\Sigma\{e(B)\colon \ B\in\mathcal{B}(u,G)\}=\Sigma\{e(f(B))\colon \ B\in\mathcal{B}(u,G)\}=e(H)=m.k,$ contradicting the fact that m>1. Thus, for every cut point v of H, there is a branch $B\in\mathcal{B}(v,H)$, such that

(1)
$$e(B) > k$$
.

Let B be a branch of H for which e(B) is minimal among all branches of H having more than k edges. Assume that B is a branch at v and let w be the only vertex of B adjacent to v. Clearly w is a cut point of H (since k > 0), and for every $C \in B(w,H) \setminus \{B(w,v,H)\}$ e(C) < e(B). This, together with the minimality of B, implies

(2)
$$e(C) \leq k$$

for all $C \in \mathcal{B}(w, H) \setminus \{B(w, v, H)\}.$

By assumption there is a cut point z of G and a bijection $g: \mathcal{B}(w,H) \to \mathcal{B}(z,G)$ such that for every $B \in \mathcal{B}(w,H)$, $e(B) \equiv e(g(B)) \pmod{k}$. This and (2) imply that

(3)
$$e(C) = e(g(C))$$

for all $C \in B(w,H) \setminus \{B(w,v,H)\}$. (1), (2) and (3) imply $k < e(B) = 1 + \Sigma \{e(C): C \in B(w,H) \setminus \{B(w,v,H)\}\} = 1 + \Sigma \{e(g(C)): C \in B(w,H) \setminus \{B(w,v,H)\}\} = 1 + \Sigma \{e(B): B \in B(z,G)\} - e(g(B(w,v,H))) \le 1 + k - 1 = k$, which is impossible.

Thus Case 2 is impossible and the validity of Theorem 1 is established.

As we remarked, using Theorem 1 we can prove many results of the

same kind as Theorems 3,4,5 and 6 of [1]. Theorem 2 below is one such result. We note that it implies Theorems 3,4, and 5 of [1] as special cases, and it is certainly more general than these three theorems.

THEOREM 2. For $r \geq 2$ and $n_1 \geq n_2 \geq \ldots \geq n_r \geq 1$, let $T(n_1, n_2, \ldots, n_r)$ denote the tree consisting of r paths P_1, P_2, \ldots, P_r meeting at one endpoint where $e(P_r) = n$, for $1 \leq i \leq r$.

If r=2 or if r>2 and $n_1 \leq n_2 + \ldots + n_r$, then for every tree H

$$T(n_1, n_2, \dots, n_p) \mid H \leftrightarrow T(n_1, n_2, \dots, n_p) \mid \mid H.$$

We omit the proof of Theorem 2, since it follows quite easily from Theorem 1.

References

[1] Y. Caro and J. Schonheim, Decomposition of trees into isomorphic subtrees. Ars Combinatoria 9(1980), 119-130.

Department of Mathematics Tel Aviv University Ramat-Aviv, Tel Aviv Israel